Ab initio theory of phase transitions and thermoelasticity of minerals
نویسندگان
چکیده
Accurate quantum-mechanical simulations have significantly extended the current picture of the Earth and hold a great promise for the future of the Earth and planetary sciences. Studies of phase transitions, equations of state, elasticity and thermoelastic properties of the Earth-forming minerals are essential to geophysics. This chapter gives a basic background of the physics of the deep Earth and outlines the theory of phase transitions, equations of state, elasticity and thermoelastic properties. A particular emphasis is put on the principles of quantum-mechanical simulations and some recent results relevant to geophysics. The importance of quantum-mechanical simulations is reflected by the award of the 1998 Nobel Prize in Chemistry to W. Kohn and J. Pople, who were among the pioneers of this field. Areas of application of such simulations are extremely diverse and include studies of the electronic structure, reactivity, catalysis, bulk and surface structure, prediction of materials structures and properties, especially at extreme conditions, calculation of phase diagrams and studies of phase transitions etc. One of the most exciting areas of application of such simulations is the study of the Earth(and planet-) forming minerals at the extreme conditions of the Earth’s interior. One can accurately predict the structures, properties, and behaviour of minerals. This often reveals new aspects of mineral crystal chemistry and allows one to explain geophysical measurements and understand better how the Earth works as a planet. This chapter consists of five major parts – Part I: Brief geophysical introduction, Part II: Thermoelastic properties, Part III: Phase transitions, Part IV: Simulation methods and Part V: Examples from recent studies. Each part is supplied with a number of references for further reading.
منابع مشابه
An Ab initio and chemical shielding tensors calculations for Nucleotide 5’-Monophosphates in the Gas phase
Structural and magnetic properties of purine and pyrimidine nucleotides (CMP, UMP, dTMP, AMP, GMP, IMP) were studied at different levels of ab initio molecular orbital theory. These calculations were performed at the hartree-fock level and density functional B3LYP methods. Geometries were fully optimized by following Cs symmetry restrictions. The standard 6-31G** basis set which includes polari...
متن کاملAb initio and charge study of phospholipids in gas phase and solution
phospholipids are important for the biological lipid and are commonly used in biophysical studies.A quantumcalculation for two phospholipids Dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidic acidwere performed using the abinitio software. Geometry optimization structures were obtained at RHF level using3-21G, 6-31G*. These basis sets were used To understanding the effects of envir...
متن کاملAb initio and DFT studies on tautomerism of 5-methyl cytosine in gaseous phase
Ab initio and DFT methods have been used to study the seven tautomeric forms of 5-methylcytosine molecule.The related tautomer in gas phase have been studied at HF/6-31G, HF/6-31G* and B3LYP/6-31G* levels oftheory. The structures,enthalpies,entropies,Gibbs free energies,relative tautomerization energies of tautomersand tautomeric equilibrium constants were compared and analyzed along with full ...
متن کاملAb Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase
Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...
متن کاملpKa predictions of some aniline derivatives by ab initio calculations
: In this work, different levels of theory containing HF, B3LYP, and MP2 with different basis sets such as 6-31G, 6-31G*, 6-311G, 6-311+G, 6-31+G*, 6-31+G are used to predict relative acidity constants of some aniline derivatives. Three different kinds of radii containing UAHF, Bondi, and Pauling are used to study how cavity forms change acidity constants. In all cases, DPCM model is used to si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003